

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Honolulu, Hawaii, January 27 - February 1, 2019

University of Science and Technology of China (USTC)

A Radical-aware Attention-based Model for Chinese Text Classification

Hanqing Tao¹, Shiwei Tong¹, Hongke Zhao¹, Tong Xu^{1, 2*}, Binbin Jin¹, Qi Liu^{1, 2}

¹Anhui Province Key Lab. of Big Data Analysis and Application, University of Science and Technology of China, ²School of Data Science, University of Science and Technology of China

Introduction

Motivation: Chinese is a language derived from Oracle Bone Inscriptions (pictographs), which is essentially different from English or other phonetic languages. Radical is a semantic unit of Chinese with some graphic characteristics, which might help us to recognize semantics.

Fact : Most existing studies on text classification are professionally conducted for English, which may lose effectiveness on Chinese materials due to the huge difference between Chinese and English.

Implementation

- Given: A predefined set of tags **U**.
- An untagged text *T*. • Input space:
- The most appropriate assignment $P \in U$. • Output space:
- To learn a classification function $F: F(T) \rightarrow P$. • Task:

Hidden Representation Calculation:

Given a specific feature embedding sequence of a sentence $s = \{x_1, x_2, \dots, x_N\}$, the hidden

 $\overrightarrow{h_t} = LSTM(\overrightarrow{h}_{t-1}, x_t),$ $\overleftarrow{h_t} = LSTM(\overleftarrow{h}_{t+1}, x_t),$ $y_t = [\overrightarrow{h_t}, \overleftarrow{h_t}],$

Definition: To select **the most appropriate** assignment to an untagged text from a predefined set of tags.

> How to build a text classification model adapted to Chinese language?

ı (L	\mathcal{Q}	0	T	1 h
人	日	月	木	山

Sun Moon Timber Mountain Man

Glyph Origin	Radical (Chinese Characters)	English		
1	亻 (仆,伴)	Man (servant, partner)		
Ø	目(看,瞳)	Eye (look, pupil)		
Y	扌(打,挖)	Hand (hit, dig)		
Θ	日 (晴,暗)	Sun (sunny, dark)		
Ϋ́	雨 (雾,霜)	Rain (fog, frost)		
≥	山 (峰,崖)	Mountain (peak, cliff)		
A radical is often related to certain concepts				

Challenges:

- Radical is useful, but how to **introduce** it to existing works is difficult.
- The properties of Chinese is hard to model.
- How to **combine** radicals with other features is also challenging.

Table 1: Characters with the same radical "insect".			Table 2: Words with the same character "cattle".		
Chinese Characters	Radical	English	Chinese Words	Chinese Characters	English
蝇	虫	fly	公牛	公 (male) + 牛 (cattle)	bull
蚊	虫	mosquito	母牛	母 (female) + 牛 (cattle)	cow
蜂	虫	bee	牛奶	牛 (cattle) + 奶 (milk)	milk
虱	虫	louse	牛肉	牛 (cattle) + 肉 (meat)	beef
蚁	上	ant	牛角	牛 (cattle) + 角 (horn)	horn

vector of a BLSTM is calculated as follows:

Attention Mechanism:

- 1) To capture the **interrelations** $\beta' =$ between radicals and their corresponding characters or words;
- 2) The radical information can be further **modified** by the attention weight sum of character context and word context.

Prediction:

$$\begin{aligned} \alpha^{'} &= [\alpha_{1}^{'}, ..., \alpha_{\epsilon}^{'}, ..., \alpha_{m}^{'}], \ \alpha_{\epsilon}^{'} &= f(y_{\epsilon}^{c}, e_{i}^{rc}), 1 \leqslant \epsilon \leqslant m, \\ \beta^{'} &= [\beta_{1}^{'}, ..., \beta_{\theta}^{'}, ..., \beta_{n}^{'}], \ \beta_{\theta}^{'} &= f(y_{\theta}^{w}, e_{j}^{rw}), 1 \leqslant \theta \leqslant n, \\ \alpha_{i} &= \frac{exp\left(\alpha_{\epsilon}^{'}\right)}{\sum_{\epsilon=1}^{m} exp\left(\alpha_{\epsilon}^{'}\right)}, \ where \sum_{i=1}^{m} \alpha_{i} = 1, \\ \beta_{j} &= \frac{exp\left(\beta_{\theta}^{'}\right)}{\sum_{\theta=1}^{n} exp\left(\beta_{\theta}^{'}\right)}, \ where \sum_{j=1}^{n} \beta_{j} = 1, \\ \text{ion} \\ \text{xt} \qquad \widetilde{e}_{i}^{rc} &= \sum_{\epsilon=1}^{m} \alpha_{\epsilon} y_{\epsilon}^{c}, \ \widetilde{e}_{j}^{rw} = \sum_{\theta=1}^{n} \beta_{\theta} y_{\theta}^{w}, \end{aligned}$$

$$Con = y_o^c \oplus y_o^w, \quad O = sigmoid (Con \times W), \quad P = argmax (softmax (O)).$$

Objective Function:

$$Loss = -\sum_{T \in Corpus} \sum_{i=1}^{K} p_i(T) \log p_i(T)$$

Experiments

1. Dataset: We conduct experiments on two real-world datasets.

Table 3: Statistics of <i>dataset#1</i> and <i>dataset#2</i> .					
Dataset		Count	Len (Avg. / Max)	Class	
Dataset#1	Train	47,952	17.8 / 56	32	
	Test	15,986	17.7 / 56	52	
Dataset#2	Train	36,431	16.7 / 46	32	
	Test	12,267	16.7 / 43	52	

2. Experimental Results of Different Methods

Radical-aware Attention-based Four-Granularity model

Different from previous work, our goal is to take advantage of radicals and leverage four different granularities of features to **comprehensively** model Chinese texts. Furtherly, we **systematically integrate** these features into the task of Chinese text classification, so that to deal with the huge difference between Chinese and English.

- Word-level radicals are worthy of attention.
- Our model (RAFG) gain higher performance that any other comparison methods

	Table 4: Experimental results of different methods on $dataset #1$ and $dataset #2$.				
	Methods	Dataset#1	Dataset#2		
l	Wiethous	$F_1(P,R)$	$F_1(P,R)$		
	SVM + BOW(W)	0.7552 (0.7639, 0.7514)	0.7341 (0.7459, 0.7303)		
	SVM + BOW(C)	0.7421 (0.7440, 0.7420)	0.7252 (0.7268, 0.7255)		
	$SVM + BOW(R^w)$	0.6834 (0.6913, 0.6800)	0.6762 (0.6858, 0.6729)		
	$SVM + BOW(R^c)$	0.4697 (0.4652, 0.4809)	0.4691 (0.4636, 0.4813)		
าร al	LSTM (E^C)	0.7077 (0.7108, 0.7077)	0.6871 (0.6926, 0.6887)		
	LSTM (E^W)	0.8029 (0.8034, 0.8031)	0.7875 (0.7893, 0.7885)		
n [Four LSTMs $(E^W + E^C + E^{R^w} + E^{R^c})$	0.8072 (0.8078, 0.8074)	0.7904 (0.7912, 0.7910)		
	Four BLSTMs $(E^W + E^C + E^{R^w} + E^{R^c})$	0.8098 (0.8103, 0.8103)	0.7915 (0.7925, 0.7921)		
	C-LSTMs $(E^W + E^C)$	0.8112 (0.8118, 0.8115)	0.7931 (0.7944, 0.7929)		
	C-BLSTMs ($E^W + E^C$)	0.8128 (0.8135, 0.8131)	0.7956 (0.7951, 0.7972)		
[Ours (RAFG)	0.8181 (0.8181, 0.8187)	0.7999 (0.7993, 0.8010)		

3. Discussion

- The peaks and valleys exactly reflect the classification effect of radicals.
- Radicals can help recognize semantics and classify Chinese texts.
- For example, the original meaning of radical "clothing" is closed to the concept of class "dress", where the high tf-idf value is a convincing indication.

Tf-idf Distributions of Some Radicals in 32 Classes

4. Conclusion

- Our work presents a novel insight on how to leverage radicals.
- **Simply introducing radicals** to Chinese text classification cannot improve the performance well.

• Making **rational use** of radicals is necessary.

• Attention mechanism in RAFG can enhance the effect of radicals.

Speaker: Hanging Tao Email: hqtao@mail.ustc.edu.cn Lab Homepage: http://bigdata.ustc.edu.cn/

• Extensive experiments demonstrate the **superiority** of our model and the effectiveness of radicals in the task of Chinese text classification.